Commercial Farming in Tropical Agriculture

Terry L. Roberts
International Plant Nutrition Institute

Global Conference on Nutrient Management June 19-20, 2013 Beijing, PRC

Commercial farming

- Large-scale production of crops for sale into world markets
 - e.g. wheat, maize, tea, coffee, sugarcane, rubber, banana, oil palm

 Crop may be produced on-site or shipped to a processing facility belonging to the farm owners

Commercial farming

Differs from subsistence farming ... main objective is higher profits through:

- economies of scale,
- specialization,
- capital-intensive farming techniques,
- labor-saving technologies,
- maximizing of yield

Commercial farming drivers:

- Transportation access to transportation systems to move products to market
- Climate and soil determines the type of crop that can be grown
- Materials –access to raw materials, (e.g. seed, fertilizer, technology)
- 4. Labor needs affordable labor supply
- 5. Market forces supply and demand impact prices

Oil crops harvested area: 273 M ha, 2011

Source: http://faostat.fao.org

World oils and fats production, 185 Mt

Source: Oil World, 2012

Source: Oil World Annual 2006

Crude Palm Oil Yield, t/ha/yr

Source: Donough et al., 2010

Palm Oil Production

Source: FAO 2007, cited in Koh & Wilcove 2008, Wild Asia 2012

2011 Top Oil Palm Producing Countries

- 16.3 M ha harvested in 42 countries
 - 233.8 M t fruit
 - -48.6 M t oil
- 12 countries account for 93% of area harvested and 96% of fruit production

Average fresh fruit bunch (FFB) yield of top oil palm producing countries, t/ha

•		• **	
Country	Yield	Country	Yield
Indonesia	16.7	Ecuador	15.4
Malaysia	21.9	Papua New Guinea	14.5
Thailand	18.0	Guatemala	28.0
Nigeria	2.7	Cameroon	12.7
Colombia	22.9	Honduras	14.1
Ghana	5.6	Côte d'Ivoire	6.7

Stages of oil palm production: seedlings and

Stages of oil palm production: removal of mature trees and replanting

Annual nutrient demand (kg/ha) of oil palm at various stages (adapted from Oberthur et al. 2012)

Age	N	P ₂ O ₅	K ₂ O
0-3	40	14	66
3-9	191 - 267	74 – 96	344 - 465
10	114	32	180
9-12	116	28	200
15	162 -192	48 - 60	300 - 335

Fertilizing oil palm

Oil palm fertilizer application rates (selected examples of mature palms, kg/ha/yr)

Soil	N	P ₂ O ₅	K ₂ O	MgO
Paleuquult	230	90	310	35
Tropofibrist	160	70	700	10
Distropept	200	130	500	60

- N rates from 1.5 to 8 kg / palm / year of AS or its equivalent
- P rates from 0.5 to 2 kg / palm / year of TSP or its equivalent
- K rates from 1 to 5 kg / palm / year of KCl or its equivalent

Fertilizer recovery efficiencies: N: 19–36%, P: 7–29%, K: 29–70%,

Mg: 10–60% (Prabowo et al., 2002)

Operational Design: Commercial Production

Nutrient Input into the System, kg/ha over 4 yrs

Inorganic nutrient inputs similar in REF and

BMP, Nutrient Balance concept:

N 400-600 kg/ha over 4 years

P 80-150 kg/ha over 4 years

K 600-1200 kg/ha over 4 years

Mg 60-100 kg/ha over 4 years

BMP received EFB 40t/ha

N 60-400 kg/ha

P 10-50 kg/ha

K 200-1150 kg/ha

Mg 15-90 kg/ha

Growth in maize area, production, and yield in Southeast Asia relative to base year 2000

Source: Pasuguin et al., 2012

- Production has grown by at least 50% in the last decade due to improved yields
 - demand in Asia will reach 310 Mt by 2020, from its current
 270 Mt ... outstrip recent production increases

Tropical maize yield response to fertilizer N in SE Asia (Witt et al., 2009)

Tropical maize yield response to fertilizer P in SE Asia (Witt et al., 2009)

Site-specific nutrient management (SSNM) ... strategies for improved nutrient management

Leaf color charts

Omission plots

Decision support tools

Nutrient Expert

Recommendation:

- tailored to location-specific conditions
- consistent with 4R approach

Weight of Days after Soil **Fertilizer Amount** Growth stage planting moisture full bag (kg) sources (bags) Basal 0 sufficient 14-14-14 50 6.5 Urea 50 MOP 0.5 50 V6 25 sufficient 50 2.5 Urea sufficient V10 35 Urea 50 2 **Right Time**

high

Name and/or location: Here; Site A

110

Growing environment: Favorable rainfed

cavan (FW)

cavan (FW)

V6-V8

Recommended alternative practice for hybrid maize

plants/ha

cm

V10 or later

Current yield:

Yield goal: 165

VE

Planting density: 69,444

Distance between rows:

Other sources of nutrients: Crop residue (maize):

Organic fertilizer:

Field size:

cm

Right Source

Fertilizer rates are adjusted to field size

t/ha (15.5% MC)

t/ha (15.5% MC)

Distance between plants:

V14-VT

Right Rate

5.3

ha

Thank You

www.ipni.net

Better Crops, Better Environment ... through Science